研究示意圖。圖" />
研究示意圖。圖片來源:《婦科腫瘤學》雜志
科技日報記者 劉霞
美國佐治亞理工學院癌癥綜合研究中心(ICRC)科學家將機器學習與血液代謝物信息相結合開發(fā)出一種新方法,使卵巢癌樣本檢測準確率達93%。相關研究論文發(fā)表于最新一期《婦科腫瘤學》雜志。
卵巢癌被稱為沉默的殺手。因為這種疾病剛出現(xiàn)時通常沒有癥狀,在癌癥后期被發(fā)現(xiàn)時已經(jīng)很難治療。最新研究負責人、ICRC創(chuàng)始主任約翰·麥克唐納表示,雖然晚期卵巢癌患者平均5年生存率約為31%,但如果及早發(fā)現(xiàn)并治療,平均5年生存率將超過90%。
盡管30多年前,科學家就開始研究卵巢癌早期檢測方法,但結果一直差強人意。麥克唐納解釋說,因為卵巢癌是從分子水平開始的,所以即使是同一種癌癥,也有多種產(chǎn)生途徑。目前他們還沒有找到卵巢癌的單一通用診斷生物標志物。鑒于此,他們使用人工智能(AI)的分支機器學習,來開發(fā)新型早期診斷方法。
研究團隊指出,代謝水平上的變化可反映多個分子水平上共同作用的潛在變化,所以他們選擇患者個人的代謝圖譜作為整個檢測方法的基礎。質(zhì)譜法能通過檢測代謝物的質(zhì)量和電荷特征來識別血液中代謝物的存在,將其納入基于機器學習構建的預測模型內(nèi),類似于使用單個面部特征構建面部模式識別算法。已知有數(shù)千種代謝產(chǎn)物在人體血液中循環(huán),通過質(zhì)譜分析和機器學習,可以很容易、很準確地檢測它們。以此開展卵巢癌早期檢測,準確率高達93%。
麥克唐納表示,新方法使用患者個人的代謝圖譜,在檢測卵巢癌方面的準確性高于現(xiàn)有常規(guī)檢測方法。這種個性化的方法代表了一個極富前景的卵巢癌早期檢測方向,有望應用于其他癌癥檢測。
責任編輯: 左常睿本文鏈接:http://www.3ypm.com.cn/news-2-2754-0.htmlAI輔助診斷早期卵巢癌準確率達93%
聲明:本網(wǎng)頁內(nèi)容由互聯(lián)網(wǎng)博主自發(fā)貢獻,不代表本站觀點,本站不承擔任何法律責任。天上不會到餡餅,請大家謹防詐騙!若有侵權等問題請及時與本網(wǎng)聯(lián)系,我們將在第一時間刪除處理。
上一篇:手寫比鍵盤打字更能增強大腦連通性
點擊右上角微信好友
朋友圈
點擊瀏覽器下方“”分享微信好友Safari瀏覽器請點擊“”按鈕
點擊右上角QQ
點擊瀏覽器下方“”分享QQ好友Safari瀏覽器請點擊“”按鈕